

Overview of IS PI Workshop in Automated Reasoning September 4-6, 2002

Robert Morris
NASA Ames Research Center
Computational Sciences Division

AR Manager: Robert Morris, ARC Deputy Manager: Ben Smith, JPL

Level 4 Managers: Mike Lowry, John Bresina, ARC

Intelligent Systems Program/Automated Reasoning Element

- •Research and develop component capabilities for autonomy
 - Identify architecture for autonomous systems
 - •Leverage existing methods to develop computational solutions to hard research challenges
- Integrate autonomy components
 - •Real-world testing in real or simulated environment
- Support mission insertion of autonomy
 - •Supply funding for mission insertion development
 - •Determine that the software will work correctly and within mission constraints
 - •Help make it cost-effective to produce, maintain, and reuse the software

Automated Reasoning Sub-elements

- Intelligent Sensing and Reflexive Behavior
- Planning and Execution
- Model-based Fault Protection
- Distributed Autonomy and Architectures
- Automated Software Engineering for Autonomy

Intelligent Sensing and Reflexive Behavior

- Develop systems with situational awareness
 - Respond to external threats to system
 - Adapt to changes in environment and device
- •Emphasis on reactivity, not deliberation.

Research challenges:

Traverse Science

Detect geologic science opportunities in a Mars-rover context and generate plans for follow-up investigation

Safe & Precise Landing

Fast machine vision algorithms that estimate lander position & pose and find safe, high science-value sites.

Project Summaries: Intelligent Sensing and Reflexive Behavior 4-4-02

1100	James Montgomery	JPL	Vision-Guided Landing
1115	Peter Cheeseman	ARC/RIACS	Super-Resolved Images
1130	Robert W. Mah	ARC	Neurocontrol for Shuttle Docking
1145	Greg A. Dorais	ARC	Spacecraft Micro Robot

Planning & Execution

- •Develop automated planning systems for decomposing high level goals into sequences of activities that satisfy temporal, resource, and other constraints.
- •Develop systems for robust execution of command sequences while monitoring and responding to system failures

Research Challenges:

- •Planning effectively with time & resources
- •Mixed initiative mission optimization planning
- •Planning and reasoning in uncertain environments
- •Real time planning and execution

Project Summaries: Planning and Execution 4-04-02

1530	Nicola Muscettola	ARC	IDEA Autonomy Architecture
1615	Benjamin W. Wah	UIUC	Stochastic Anytime Planning
1630	Danel Gaines	JPL	Integrated Resource and Path Planning
1645	Forest Fisher	JPL	Integrated Planning and Execution
1770	Daniel S. Weld	υw	Contingent Planning and Execution

Project Summaries: Planning and Execution 4-05-02

945	Ari K. Jónsson	ARC	Constraint-based Planning
1000	Kanna Rajan	ARC	Mixed-Initiative Activity Planning
1015	Jeremy Frank	ARC	SOFIA Scheduling
1100	Rich Washington	ARC	Onboard Rover Autonomy
	Subbarao		
1115	Kambhampati	ASU	Partial-Order Temporal Planning
1130	David E. Smith	ARC	Concurrent Contingency Planning
1145	Benjamin D. Smith	JPL	Combinatorial Optimization Planning
1315	Issa Nesnas	JPL	Rover Autonomy Architecture

Model-based Fault Protection

Research Challenges:

- Probabilistic methods for reasoning about complex systems
- Reasoning at different levels of abstraction
- •Combined qualitative reasoning and quantitative parameter estimation
- •Model-based execution systems with tighter guarantees on response time for fault protection
- •Representation languages for modeling complex systems

- Develop methods for detecting, diagnosing and reacting to mission events through the use of explicit models of hardware and software components.
- •Model-based specification of system behavior at the component level, rather than the system level.

January 14, 2003

Model-based Fault Protection 4-05-02

1330	Mark Shirley	ARC	L2 Diagnostic Agent/Skunkworks
1400	Richard Dearden	ARC	Probabilistic Hybrid Fault Detection
1415	Gautam Biswas	Vanderbilt	Fault-Adaptive Control
1430	Hamid R. Berenji	ARC	Soft Computing for Fault Monitoring
1445	Hamid R. Berenji	ARC	Team Coordination Strategies
1530	David Watson	APL	Model-based Reactive Control
1545	Brian C. Williams	МІТ	Hybrid Health Management and Control

Agent Architectures and Distributed Autonomy

Research Challenges

- Low-cost, scalable ground operations for multiple-asset missions.
- Planning and scheduling to enable coordinated operations
- Low-bandwidth approaches to onboard coordination.
- Ad hoc networking of existing satellites
- Collective fault detection, isolation and recovery.

- •Develop capabilities that allow autonomous systems to coordinate activities in order to achieve a common goal.
- •Develop techniques for controlling and coordinating multiple-asset missions.

Project Summaries: Distributed Autonomy and Architectures 4-4-02

				Onboard Scientist for Multi-Rover
-	1330	David Gaines	JPL	Science Investigation
	1345	Frank Kirchner	Northeastern	Team-Oriented Robotic Exploration
	1400	Dani Goldberg	CMU	Multi-Rover Coordination
	1415	Anthony Barrett	JPL	Team Sequence Execution
	1100			
	1430	Anthony Barrett	JPL	Continual Team Planning

Automated Software Engineering for Autonomy

- •Build high-assurance software generators that target autonomy capabilities
- •Create/adopt standards for software Integration of autonomy components
- Develop verification methods at different levels of granularity
- Methods for verifying software that adapts and learns

Research Challenges:

- Verification Technology Addressing Combinatorial Behavior of Autonomous Systems
- Verification Technology for Model-based
 Autonomy
- Integration of Verification Technologies
 Including Testing for Autonomy

January 14, 2003

Automated Software Engineering for Autonomy 4-06-02

900	Michael Lowry	ARC	State Estimation Program Synthesis
915	Michael Lowry	ARC	Autonomy Verification and Validation
930	Jonathan Whittle	ARC	Design Level Synthesis
945	Bernd Fischer	ARC	AutoBayes
1000	Chitta Baral	ASU	Agent Development and Verification
			Modular Verification of Autonomous
1015	Dimitra Giannakopoulou	ARC	Systems

Other AR Workshop Highlights

- AR/IDU joint sessions
 - James Bellingham, Monterrey Bay Aquarium, (Wed. Banquet)
 - Dan Cooke, Texas Tech University (Thurs. Banquet)
 - Butler Hine and others (Friday Wrap-up Session)
- Mission autonomy infusion
 - James Crawford, ARC (Thurs. 0900)